Invariant subspaces of certain linear operators

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Invariant Subspaces for Certain Finite-rank Perturbations of Diagonal Operators

Suppose that {ek} is an orthonormal basis for a separable, infinite-dimensional Hilbert space H. Let D be a diagonal operator with respect to the orthonormal basis {ek}. That is, D = ∑∞ k=1 λkek⊗ek, where {λk} is a bounded sequence of complex numbers. Let T = D + u1 ⊗ v1 + · · ·+ un ⊗ vn. Improving a result [2] of Foias et al., we show that if the vectors u1, . . . , un and v1, . . . , vn satis...

متن کامل

Invariant Sübspaces of Certain Linear Operators

This theorem is stronger than a result which Iohvidov [3] derived from the fundamental theorem of [6]. Iohvidov's theorem is so related to Pontrjagin's fundamental theorem that either one can be obtained from the other by a transform analogous to the Cayley transform (see [4]). Pontrjagin's proof of his theorem uses delicate and rather complicated arguments. Kreïn's proof of the theorem stated ...

متن کامل

Certain Invariant Subspaces for Operators with Rich Eigenvaujes

For a connected open subset of the plane and n a positive integer, let B () be the space introduced by Cowen and Douglas. In this article we study the n spectrum of restrictions of T in order to obtain more information about the invariant subspaces of T. When n=l and T e Bl(fl) such that o(T) is a spectral set for T we use the functional calculus we have developed for such operators to give som...

متن کامل

Invariant Subspaces, Quasi-invariant Subspaces, and Hankel Operators

In this paper, using the theory of Hilbert modules we study invariant subspaces of the Bergman spaces on bounded symmetric domains and quasi-invariant sub-spaces of the Segal–Bargmann spaces. We completely characterize small Hankel operators with finite rank on these spaces.

متن کامل

Lie-algebras and Linear Operators with Invariant Subspaces

A general classification of linear differential and finite-difference operators possessing a finite-dimensional invariant subspace with a polynomial basis (the generalized Bochner problem) is given. The main result is that any operator with the above property must have a representation as a polynomial element of the universal enveloping algebra of some algebra of differential (difference) opera...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the American Mathematical Society

سال: 1963

ISSN: 0002-9904

DOI: 10.1090/s0002-9904-1963-11028-9